Abstract
In this paper, the authors consider the processes of dynamic interaction between the boiling particles of the dispersed phase of the emulsion leading to the large droplet breakup. Differences in the consideration of forces that determine the breaking of non-boiling and boiling droplets have been indicated in the study. They have been determined by the possibility of using the model to define the processes of displacement, deformation, or fragmentation of the inclusion of the dispersed phase under the influence of a set of neighboring particles. The dynamics of bubbles in a compressible liquid with consideration for interfacial heat and mass transfer has also been analyzed in the paper. The effect of standard and system parameters on the intensity of cavitation processes is considered. Physical transformations during the cavitation treatment of liquid are caused not only by shock waves and radiated pressure pulses but also by extreme thermal effects. At the stage of ultimate bubble compression, vapor inside the bubble and the liquid in its vicinity transform into the supercritical fluid state. The model analyzes microflow features in the inter-bubble space and quantitatively calculates local values of the velocity and pressure fields, as well as dynamic effects.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献