Abstract
Active power factor correction converters are often introduced as the front stage of power electronic equipment to improve the power factor and eliminate higher harmonics. A Boost or Buck-Boost converter operating in discontinuous current mode is always adopted to achieve high power factor correction. In addition, the input current contains a large amount of higher harmonics, and a low-pass input filter is commonly adopted to filter it out. In this paper, a single-stage high-frequency AC/AC converter is taken as an example to demonstrate the design method of a passive low-pass filter. Firstly, the input side of the grid needs to meet the power factor and harmonic requirements. The preset parameters are set to a range to characterize the performance of the LC filter. The quantitative design method of input filter is proposed and summarized. Moreover, the sensitivity of the filter parameters is analyzed, providing a direction in practical applications. Preset parameters are all proved to conform to the preset range through PSIM simulation. Finally, a 130-W prototype is established to verify the correction of proposed design method. The power factor is around 0.935 and harmonic content in the input current is about 26.4%. All requirements can be satisfied.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献