A Rapid Beam Pointing Determination and Beam-Pointing Error Analysis Method for a Geostationary Orbiting Microwave Radiometer Antenna in Consideration of Antenna Thermal Distortions

Author:

Hu HualongORCID,Tong Xiaochong,Li He

Abstract

When observing the Earth’s radiation signal with a geostationary orbiting (GEO) mechanically scanned microwave radiometer, it is necessary to correct the antenna beam pointing (ABP) in real time for the deviation caused by thermal distortions of antenna reflectors with the help of the on-board Image Navigation and Registration (INR) system during scanning of the Earth. The traditional ABP determination and beam-pointing error (BPE) analysis method is based on the electromechanical coupling principle, which usurps time and computing resources and thus cannot meet the requirement for frequent real-time on-board INR operations needed by the GEO microwave radiometer. For this reason, matrix optics (MO), which is widely used in characterizing the optical path of the visible/infrared sensor, is extended to this study so that it can be applied to model the equivalent optical path of the microwave antenna with a much more complicated configuration. Based on the extended MO method, the ideal ABP determination model and the model for determining the actual ABP affected by reflector thermal distortions are deduced for China’s future GEO radiometer, and an MO-based BPE computing method, which establishes a direct connection between the reflector thermal distortion errors (TDEs) and the thermally induced BPE, is defined. To verify the overall performance of the extended MO method for rapid ABP determination, the outputs from the ideal ABP determination model were compared to calculations from GRASP 10.3 software. The experimental results show that the MO-based ABP determination model can achieve the same results as GRASP software with a significant advantage in computational efficiency (e.g., at the lowest frequency band of 54 GHz, our MO-based model yielded a 4,730,000 times faster computation time than the GRASP software). After validating the correctness of the extended MO method, the impacts of the reflector TDEs on the BPE were quantified on a case-by-case basis with the help of the defined BPE computing method, and those TDEs that had a significant impact on the BPE were therefore identified. The methods and results presented in this study are expected to set the basis for the further development of on-board INR systems to be used in China’s future GEO microwave radiometer and benefit the ABP determination and BEP analysis of other antenna configurations to a certain extent.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3