A Review of Quantifying pCO2 in Inland Waters with a Global Perspective: Challenges and Prospects of Implementing Remote Sensing Technology

Author:

Wen Zhidan,Shang Yingxin,Lyu Lili,Li Sijia,Tao Hui,Song KaishanORCID

Abstract

The traditional field-based measurements of carbon dioxide (pCO2) for inland waters are a snapshot of the conditions on a particular site, which might not adequately represent the pCO2 variation of the entire lake. However, these field measurements can be used in the pCO2 remote sensing modeling and verification. By focusing on inland waters (including lakes, reservoirs, rivers, and streams), this paper reviews the temporal and spatial variability of pCO2 based on published data. The results indicate the significant daily and seasonal variations in pCO2 in lakes. Rivers and streams contain higher pCO2 than lakes and reservoirs in the same climatic zone, and tropical waters typically exhibit higher pCO2 than temperate, boreal, and arctic waters. Due to the temporal and spatial variations of pCO2, it can differ in different inland water types in the same space-time. The estimation of CO2 fluxes in global inland waters showed large uncertainties with a range of 1.40–3.28 Pg C y−1. This paper also reviews existing remote sensing models/algorithms used for estimating pCO2 in sea and coastal waters and presents some perspectives and challenges of pCO2 estimation in inland waters using remote sensing for future studies. To overcome the uncertainties of pCO2 and CO2 emissions from inland waters at the global scale, more reliable and universal pCO2 remote sensing models/algorithms will be needed for mapping the long-term and large-scale pCO2 variations for inland waters. The development of inverse models based on dissolved biogeochemical processes and the machine learning algorithm based on measurement data might be more applicable over longer periods and across larger spatial scales. In addition, it should be noted that the remote sensing-retrieved pCO2/the CO2 concentration values are the instantaneous values at the satellite transit time. A major technical challenge is in the methodology to transform the retrieved pCO2 values on time scales from instant to days/months, which will need further investigations. Understanding the interrelated control and influence processes closely related to pCO2 in the inland waters (including the biological activities, physical mixing, a thermodynamic process, and the air–water gas exchange) is the key to achieving remote sensing models/algorithms of pCO2 in inland waters. This review should be useful for a general understanding of the role of inland waters in the global carbon cycle.

Funder

the National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference111 articles.

1. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget

2. Global transfer of carbon by rivers;Meybeck;Glob. Chang. News,1999

3. Global carbon dioxide emissions from inland waters

4. The study of carbon in inland waters—from isolated ecosystems to players in the global carbon cycle

5. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3