De-Noising of Magnetotelluric Signals by Discrete Wavelet Transform and SVD Decomposition

Author:

Zhou Rui,Han Jiangtao,Guo Zhenyu,Li Tonglin

Abstract

Magnetotelluric (MT) sounding data can easily be damaged by various types of noise, especially in industrial areas, where the quality of measured data is poor. Most traditional de-noising methods are ineffective to the low signal-to-noise ratio of data. To solve the above problem, we propose the use of a de-noising method for the detection of noise in MT data based on discrete wavelet transform and singular value decomposition (SVD), with multiscale dispersion entropy and phase space reconstruction carried out for pretreatment. No “over processing” takes place in the proposed method. Compared with wavelet transform and SVD decomposition in synthetic tests, the proposed method removes the profile of noise more completely, including large-scale noise and impulse noise. For high levels or low levels of noise, the proposed method can increase the signal-to-noise ratio of data more obviously. Moreover, application to the field MT data can prove the performance of the proposed method. The proposed method is a feasible method for the elimination of various noise types and can improve MT data with high noise levels, obtaining a recovery in the response. It can improve abrupt points and distortion in MT response curves more effectively than the robust method can.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3