Matlab Software for Supervised Habitat Mapping of Freshwater Systems Using Image Processing

Author:

Bardsley Johnathan M.,Howard Marylesa,Lorang Mark

Abstract

We present a software package for the supervised classification of images useful for cover-type mapping of freshwater habitat (e.g., water surface, gravel bars, vegetation). The software allows the user to select a representative subset of pixels within a specific area of interest in the image that the user has identified as a cover-type habitat of interest. We developed a graphical user interface (GUI) that allows the user to select single pixels using a dot, line, or group of pixels within a defined polygon that appears to the user to have a spectral similarity. Histogram plots for each band of the selected ground-truth subset aid the user in determining whether to accept or reject it as input data for the classification processes. A statistical model, or classifier, is then built using this pixel subset to assign every pixel in the image to a best-fit group based on reflectance or spectral similarity. Ideally, a classifier incorporates both spectral and spatial information. In our software, we implement quadratic discriminant analysis (QDA) for spectral classification and choose three spatial methods—mode filtering, probability label relaxation, and Markov random fields—to incorporate spatial context after computation of the spectral type. This multi-step interactive process makes the software quantitatively robust, broadly applicable, and easily usable for cover-type mapping of rivers, their floodplains, wetlands often components of these functionally linked freshwater systems. Indeed, this supervised classification approach is helpful for a wide range of cover-type mapping applications in freshwater systems but also estuarine and coastal systems as well. However, it can also aid many other applications, specifically for automatic and quantitative extraction of pixels that represent the water surface area of rivers and floodplains.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3