Measurements and Modeling of Optical-Equivalent Snow Grain Sizes under Arctic Low-Sun Conditions

Author:

Jäkel Evelyn,Carlsen TimORCID,Ehrlich André,Wendisch ManfredORCID,Schäfer Michael,Rosenburg Sophie,Nakoudi KonstantinaORCID,Zanatta Marco,Birnbaum Gerit,Helm VeitORCID,Herber Andreas,Istomina Larysa,Mei Linlu,Rohde AnikaORCID

Abstract

The size and shape of snow grains directly impacts the reflection by a snowpack. In this article, different approaches to retrieve the optical-equivalent snow grain size (ropt) or, alternatively, the specific surface area (SSA) using satellite, airborne, and ground-based observations are compared and used to evaluate ICON-ART (ICOsahedral Nonhydrostatic—Aerosols and Reactive Trace gases) simulations. The retrieval methods are based on optical measurements and rely on the ropt-dependent absorption of solar radiation in snow. The measurement data were taken during a three-week campaign that was conducted in the North of Greenland in March/April 2018, such that the retrieval methods and radiation measurements are affected by enhanced uncertainties under these low-Sun conditions. An adjusted airborne retrieval method is applied which uses the albedo at 1700 nm wavelength and combines an atmospheric and snow radiative transfer model to account for the direct-to-global fraction of the solar radiation incident on the snow. From this approach, we achieved a significantly improved uncertainty (<25%) and a reduced effect of atmospheric masking compared to the previous method. Ground-based in situ measurements indicated an increase of ropt of 15 µm within a five-day period after a snowfall event which is small compared to previous observations under similar temperature regimes. ICON-ART captured the observed change of ropt during snowfall events, but systematically overestimated the subsequent snow grain growth by about 100%. Adjusting the growth rate factor to 0.012 µm2 s−1 minimized the difference between model and observations. Satellite-based and airborne retrieval methods showed higher ropt over sea ice (<300 µm) than over land surfaces (<100 µm) which was reduced by data filtering of surface roughness features. Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals revealed a large spread within a series of subsequent individual overpasses, indicating their limitations in observing the snow grain size evolution in early spring conditions with low Sun.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3