The Effective Synthesis of New Benzoquinoline Derivatives as Small Molecules with Anticancer Activity

Author:

Zbancioc Gheorghita1ORCID,Mangalagiu Ionel I.12ORCID,Moldoveanu Costel1ORCID

Affiliation:

1. Chemistry Department, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania

2. Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania

Abstract

In this study, some novel benzo[c]quinoline derivatives were synthesized, their structural characteristics were described, and their in vitro anticancer efficacy was investigated. The synthesis involves an initial quaternization of the nitrogen atom from benzo[c]quinoline and then a [3+2] dipolar cycloaddition reaction of the in situ formed ylide. The effectiveness of synthesis using traditional thermal heating (TH) compared to microwave (MW) and ultrasound (US) irradiation was investigated in detail. The setup of a reaction under MW or US irradiation offers a number of additional benefits: higher yields, a reduction in the amount of solvent used compared to TH, a reduction in the reaction time from hours to minutes, and a reduction in the amount of energy consumed. The structure of all the obtained compounds was proved by several spectral techniques (FTIR, HRMS, and NMR). All benzo[c]quinoline derivatives (quaternary salts and cycloadducts) along with ten other benzo[f]quinoline derivatives (quaternary salts and cycloadducts), previously obtained, were tested in an in vitro single-dose anticancer experiment. The results demonstrated that the cycloadducts 5a–c and 6a–c exhibit stronger anticancer activity than quaternary salts 3a–c. The most active compound is compound 5a, with anticancer activity on most of the cell lines studied, while the second most active compound is 6c, showing significant lethality for the SR leukemia cell line (17%). Structure-activity relationship (SAR) correlations are also included in the study.

Funder

Romanian Ministry of Education and Research, CNCS—UEFISCDI

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3