Abstract
Nuisance faults are caused by weather events, which result in solar farms being disconnected from the electricity grid. This results in long stretches of downtime for troubleshooting as data are mined manually for possible fault causes, and consequently, cost thousands of dollars in lost revenue and maintenance. This paper proposes a novel fault detection technique to identify nuisance faults in solar farms. To initialize the design process, a weather model and solar farm model are designed to generate both training and testing data. Through an iterative design process, a fine tree model with a classification accuracy of 96.7% is developed. The proposed model is successfully implemented and tested in real-time through a server and web interface. The testbed is capable of streaming in data from a separate source, which emulates a supervisory control and data acquisition (SCADA) or weather station, then classifies the data in real-time and displays the output on another computer (which imitates an operator control room).
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献