Synthesis, Structure, and Properties of EuLnCuSe3 (Ln = Nd, Sm, Gd, Er)

Author:

Andreev Oleg V.,Atuchin Victor V.ORCID,Aleksandrovsky Alexander S.ORCID,Denisenko Yuriy G.ORCID,Zakharov Boris A.ORCID,Tyutyunnik Alexander P.ORCID,Habibullayev Navruzbek N.ORCID,Velikanov Dmitriy A.ORCID,Ulybin Dmitriy A.,Shpindyuk Daniil D.

Abstract

EuLnCuSe3 (Ln = Nd, Sm, Gd, Er), due to their complex composition, should be considered new materials with the ability to purposefully change the properties. Samples of the EuLnCuSe3 were prepared using Cu, rare earth metal, Se (99.99%) by the ampoule method. The samples were obtained by the crystallization from a melt and annealed at temperatures 1073 and 1273 K. The EuErCuSe3 crystal structure was established using the single-crystal particle. EuErCuSe3 crystallizes in the orthorhombic system, space group Cmcm, KCuZrS3 structure type, with cell parameters a = 4.0555 (3), b = 13.3570 (9), and c = 10.4602 (7) Å, V = 566.62 (6) Å3. In structure EuErCuSe3, erbium ions are coordinated by selenium ions in the octahedral polyhedron, copper ions are in the tetrahedral coordination, europium ions are between copper and erbium polyhedra layers and are coordinated by selenium ions as two-cap trigonal prisms. The optical band gap is 1.79 eV. At 4.7 K, a transition from the ferrimagnetic state to the paramagnetic state was detected in EuErCuSe3. At 85 and 293 K, the compound is in a paramagnetic state. According to XRPD data, EuLnCuSe3 (Ln = Nd, Sm, Gd) compounds have a Pnma orthorhombic space group of the Eu2CuS3 structure type. For EuSmCuSe3, a = 10.75704 (15) Å, b = 4.11120 (5) Å, c = 13.37778 (22) Å. In the series of EuLnCuSe3 compounds, the optical band gap increases 1.58 eV (Nd), 1.58 eV (Sm), 1.72 eV (Gd), 1.79 eV (Er), the microhardness of the 205 (Nd), 210 (Sm), 225 (Gd) 235 ± 4 HV (Er) phases increases, and the thermal stability of the phases increases significantly. According to the measurement data of differential scanning calorimetry, the EuNdCuSe3 decomposes, according to the solid-phase reaction T = 1296 K, ΔH = 8.2 ± 0.8 kJ/mol. EuSmCuSe3 melts incongruently T = 1449 K, ΔH = 18.8 ± 1.9 kJ/mol. For the EuGdCuSe3, two (Tα↔β = 1494 K, ΔHα↔β = 14.8 kJ/mol, Tβ↔γ = 1530 K, ΔHβ↔γ = 4.8 kJ/mol) and for EuErCuSe3 three polymorphic transitions (Tα↔β = 1561 K, ΔHα↔β = 30.3 kJ/mol, Tβ↔γ = 1579 K, ΔHβ↔γ = 4.4 kJ/mol, and Tγ↔δ = 1600 K, ΔHγ↔δ = 10.1 kJ/mol). The compounds melt incongruently at the temperature of 1588 K, ΔHmelt = 17.9 ± 1.8 kJ/mol and 1664 K, ΔHmelt = 25.6 ± 2.5 kJ/mol, respectively. Incongruent melting of the phases proceeds with the formation of a solid solution of EuSe and a liquid phase.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3