Fabrication, Design and Characterization of 1D Nano-Fibrous SiO2 Surface by a Facile and Scalable Method

Author:

Khouchaf Lahcen,Oufakir Abdelhamid

Abstract

In this paper, new 1D nano-fibrous SiO2 with functionalized surfaces is prepared. First, the effect of dispersion on the morphology and the surface properties of the silica SiO2 compounds are investigated. Second, energy dispersive spectrometer (EDS) and variable pressure scanning electron microscope (VP-SEM) show typically pure and fibrous texture on the surface of SiO2. Third, the presence of the bridging oxygen stretching vibration Si-O-Si, as well as the increase in the intensity ratio between Si-OH band and Si-O-Si are revealed by (FTIR) spectroscopy. Furthermore, X-ray diffraction (XRD) validates the conservation of the SiO lattice after chemical treatment through the KOH for both dispersed and non-dispersed samples. In addition, the shift of the XRD main peak (101) is in good agreement with the FTIR results showing the shift of Si-O-Si peak and the increase in the intensity ratio of Si-OH/Si-O-Si. The dispersed SiO2 sample exhibits a promising functionalized surface with satisfactory results in terms of silica nanofibers crystallinity and chemical composition. As a result, gigh resolution transmission electron microscopy (HR-TEM) data corroborate the claim of the presence of SiO2 nanofibers on the surface from 20 nm to 250 nm. New nano-fibrous SiO2 surfaces will be used to improve interfacial bonding strength between SiO2 compounds and polymer (or organic materials).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3