Comparative Study into Microstructural and Mechanical Characterization of HVOF-WC-Based Coatings

Author:

El Rayes Magdy M.ORCID,Sherif El-Sayed M.ORCID,Abdo Hany S.ORCID

Abstract

The main objective of this work was to characterize and compare the microstructural and mechanical properties as well as erosion resistance of WC-12Co and WC-10Co-4Cr coatings. The High Velocity Oxy Fuel (HVOF) process was applied to carbon manganese steel API 2H typically used in oil and gas industries. Microstructural characterization of feedstock powder and coatings was conducted using scanning electron microscope (SEM), energy dispersive X-ray spectroscopic (EDS) analysis, X-ray diffraction (XRD) for phase determination, powder particle size distribution, and surface roughness measurement. The average particle size of the former powder was 13.7 µm whereas it was 28.1 µm for the latter. The results showed that the smaller particle size tends to melt easier than the larger one, as deduced from SEM images and surface roughness measurements. EDS and XRD results of both coatings indicated the occurrence of WC decomposition where the powder particle size plays a significant role in these results. Mechanical characterization was discussed through comparing hardness, erosion, and adhesion test results of both coatings. WC-10Co-4Cr coating exhibited higher hardness than WC-12Co as well as higher erosion resistance, due to the extent of decomposition of WC and also to carbide particle size within the coating layer; these are the same reasons for the superior adhesion strength of the former coating compared to the latter one as per ASTM Standard “C633- 13”.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3