Wettability and Spreading Behavior of Sn–Ti Alloys on Si3N4

Author:

Wang Huaijin,Fu WeiORCID,Xue Yidi,Huo Shihui,Guo Min,Hu Shengpeng,Song XiaoguoORCID

Abstract

The purpose of this study was to investigate the wetting behavior and interfacial reactions of Sn-Ti alloys, which has been widely applied to join ceramics with metals, on Si3N4 substrates. The isothermal wetting process of Sn-xTi alloys (x = 0.5, 1.0, 1.5, 2.0 and 2.5 wt.%) on Si3N4 was systematically studied from 1223 K to 1273 K through sessile drop methods. The microstructures of the interface were characterized by X-ray diffraction (XRD) and microscope (SEM). The active Ti element remarkably enhanced the wettability of Sn-xTi melts on Si3N4 substrates because of the formation of metallic reaction layers (Ti5Si3 and TiN). With the Ti content rising, thicker Ti5Si3 layer formed on the TiN phase inducing a lower equilibrium contact angle. The value of the lowest contact angle was 6°, which was obtained in the Sn-2.0Ti/Si3N4 system at 1273 K. Larger Ti5Si3 grains were found in Sn-2.5Ti melt and a higher final contact angle was obtained. Lower temperature increased the final contact angle and slowed down the spreading rate. The formation of reaction products was calculated thematically, and the spreading kinetics was calculated according to the reaction-driven theory. The spreading behavior of Sn-Ti alloy on Si3N4 ceramic was composed of rapid-spreading stage and sluggish-spreading stage. The calculated activity energy of spreading was 395 kJ/mol. Eventually, the wetting process of Sn-2.0Ti/Si3N4 system was successfully elucidated. These results provide significant guidance information for the brazing between metals and Si3N4 ceramic.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Taishan Scholars Foundation of Shandong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3