Synthesis, X-ray, Hirshfeld, and AIM Studies on Zn(II) and Cd(II) Complexes with Pyridine Ligands

Author:

Altowyan Mezna SalehORCID,Fathalla Eman M.,Hawas Dalia,Albering Jörg H.,Barakat AssemORCID,Abu-Youssef Morsy A. M.,Soliman Saied M.ORCID,Kassem Taher S.,Badr Ahmed M. A.

Abstract

The synthesis and crystal structures of three heteroleptic complexes of Zn(II) and Cd(II) with pyridine ligands (ethyl nicotinate (EtNic), N,N-diethylnicotinamide (DiEtNA), and 2-amino-5-picoline (2Ampic) are presented. The complex [Zn(EtNic)2Cl2] (1) showed a distorted tetrahedral coordination geometry with two EtNic ligand units and two chloride ions as monodentate ligands. Complexes [Zn(DiEtNA)(H2O)4(SO4)]·H2O (2) and [Cd(OAc)2(2Ampic)2] (3) had hexa-coordinated Zn(II) and Cd(II) centers. In the former, the Zn(II) was coordinated with three different monodentate ligands, which were DiEtNA, H2O, and SO42−. In 3, the Cd(II) ion was coordinated with two bidentate acetate ions and two monodentate 2Ampic ligand units. The supramolecular structures of the three complexes were elucidated using Hirshfeld analysis. In 1, the most important interactions that governed the molecular packing were O···H (15.5–15.6%), Cl···H (13.6–13.8%), Cl···C (6.3%), and C···H (10.3–10.6%) contacts. For complexes 2 and 3, the H···H, O···H, and C···H contacts dominated. Their percentages were 50.2%, 41.2%, and 7.1%, respectively, for 2 and 57.1%, 19.6%, and 15.2%, respectively, for 3. Only in complex 3, weak π-π stacking interactions between the stacked pyridines were found. The Zn(II) natural charges were calculated using the DFT method to be 0.8775, 1.0559, and 1.2193 for complexes 1–3, respectively. A predominant closed-shell character for the Zn–Cl, Zn–N, Zn–O, Cd–O, and Cd–N bonds was also concluded from an atoms in molecules (AIM) study.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3