Abstract
In our review, we have presented a summary of the research accomplishments of nanostructured multimetal-based electrocatalysts synthesized by modified polyol methods, especially the special case of Pt-based nanoparticles associated with increasing potential applications for batteries, capacitors, and fuel cells. To address the problems raised in serious environmental pollution, disease, health, and energy shortages, we discuss and present an improved polyol process used to synthesize nanoparticles from Pt metal to Pt-based bimetal, and Pt-based multimetal catalysts in the various forms of alloy and shell core nanostructures by practical experience, experimental skills, and the evidences from the designed polyol processes. In their prospects, there are the micro/nanostructured variants of hybrid Pt/nanomaterials, typically such as Pt/ABO3-type perovskite, Pt/AB2O4-type ferrite, Pt/CoFe2O4, Pt/oxide, or Pt/ceramic by modified polyol processes for the development of electrocatalysis and energy technology. In the future, we suggest that both the polyol and the sol-gel processes of diversity and originality, and with the use of various kinds of water, alcohols, polyols, other solvents, reducing agents, long-term capping and stabilizing agents, and structure- and property-controlling agents, are very effectively used in the controlled synthesis of micro/nanoparticles and micro/nanomaterials. It is understood that at the levels of controlling and modifying molecules, ions, atoms, and nano/microscales, the polyol or sol-gel processes, and their technologies are effectively combined in bottom-up and top-down approaches, as are the simplest synthetic methods of physics, chemistry, and biology from the most common aqueous solutions as well as possible experimental conditions.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering