Rice Husk Ash as Pore Former and Reinforcement on the Porosity, Microstructure, and Tensile Strength of Aluminum MMC Fabricated via the Powder Metallurgy Method

Author:

Mohamed Ariff Azmah HanimORCID,Jun Lin Ong,Jung Dong-Won,Mohd Tahir Suraya,Sulaiman Mohd HafisORCID

Abstract

The handling of rice husk ash (RHA) has been raising environmental concerns, which led to the consideration of incorporating RHA in aluminum metal matrix composite fabrication. Due to the high silicon dioxide content of RHA, it can assist in enhancing both the properties and functionality of pure aluminum. In this research, the fabrication of aluminum metal matrix composite was carried out by utilizing different compositions of RHA, including weight fractions of 10 wt.%, 15 wt.%, and 20 wt.% via a powder metallurgy approach. The element powders, including aluminum and RHA, and magnesium stearate as a binder, were mixed, compacted, and sintered to attain a composite sample in the form of a pellet. The pellet was then characterized using field emission scanning electron microscopy (FESEM-EDX) to identify the pore structure and size for each RHA composition. The samples were also mechanically tested via Archimedes’ Principle and Brazilian Testing to identify their density, porosity, and tensile strength, respectively. The total porosity of RHA-15 wt.% was found to be the highest at 19.19%, yet with the highest tensile strength at 5.19 MPa due to its low open porosity at 4.65%. In contrast, the total porosity of RHA-20 wt.% was found to be slightly lower at 15.38%, with the highest open porosity at 6.95%, which reduced its tensile strength to 5.10 MPa, therefore indicating that reducing open porosity through controlling the composition of reinforcement tends to enhance the mechanical strength of aluminum metal matrix composites.

Funder

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3