Monte Carlo Simulations of the Metal-Directed Self-Assembly of Y-Shaped Positional Isomers

Author:

Nieckarz Karolina,Nieckarz DamianORCID

Abstract

The rational fabrication of low-dimensional materials with a well-defined topology and functions is an incredibly important aspect of nanotechnology. In particular, the on-surface synthesis (OSS) methods based on the bottom-up approach enable a facile construction of sophisticated molecular architectures unattainable by traditional methods of wet chemistry. Among such supramolecular constructs, especially interesting are the surface-supported metal–organic networks (SMONs), composed of low-coordinated metal atoms and π-aromatic bridging linkers. In this work, the lattice Monte Carlo (MC) simulation technique was used to extract the chemical information encoded in a family of Y-shaped positional isomers co-adsorbed with trivalent metal atoms on a flat metallic surface with (111) geometry. Depending on the intramolecular distribution of active centers (within the simulated molecular bricks, we observed a metal-directed self-assembly of two-dimensional (2D) openwork patterns, aperiodic mosaics, and metal–organic ladders. The obtained theoretical findings could be especially relevant for the scanning tunneling microscopy (STM) experimentalists interested in a surface-assisted construction of complex nanomaterials stabilized by directional coordination bonds.

Funder

National Science Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3