Dynamic Simulation and Parameter Analysis of Contact Mechanics for Mimicking Geckos’ Foot Setae Array

Author:

Lin QingORCID,Wu ChunboORCID,Yue Shuai,Jiang Zhonghui,Du Zhonghua,Li Mengsheng

Abstract

According to the dynamic characteristics of the adhesion desorption process between gecko-like polyurethane setae and the contact surface, the microcontact principle of an elastic sphere and plane is established based on the Johnson–Kendall–Robert model. On this basis, combined with the cantilever beam model, microscale adhesive contact models in the case of a single and an array of setae are obtained. The contact process is numerically simulated and verified by the adhesion desorption test. After that, the effects of external preload, the elastic modulus of setae material, the surface energy, and the surface roughness on the contact force and depth during the dynamic contact process of setae are studied. The results show that the error between the simulation and test is 15.9%, and the simulation model could reflect the real contact procedure. With the increase in preload, the push-off force of the setae array would grow and remain basically constant after reaching saturation. Increasing the elastic modulus of setae material would reduce the contact depth, but have little effect on the maximum push-off force; with the increase in the surface energy of the contact object, both the push-off force between the objects and the contact depth during desorption would increase. With the increase in wall roughness, the push-off force curve of the setae array becomes smoother, but the maximum push-off force would decrease. By exploring the dynamic mechanical characteristics of the micro angle of setae, the corresponding theoretical basis is provided for the numerical simulation of the adsorption force of macro materials.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3