Abstract
Li-rich layered oxide (LRLO) materials are promising positive-electrode materials for Li-ion batteries. Antisite defects, especially nickel and lithium ions, occur spontaneously in many LRLOs, but their impact on the functional properties in batteries is controversial. Here, we illustrate the analysis of the formation of Li/Ni antisite defects in the layered lattice of the Co-free LRLO Li1.2Mn0.6Ni0.2O2 compound through a combination of density functional theory calculations performed on fully disordered supercells and a thermodynamic model. Our goal was to evaluate the concentration of antisite defects in the trigonal lattice as a function of temperature and shed light on the native disorder in LRLO and how synthesis protocols can promote the antisite defect formation.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献