The Effect of Controlled Mixing on ROY Polymorphism

Author:

Van Nerom MargotORCID,Gelin PierreORCID,Hashemiesfahan Mehrnaz,De Malsche WimORCID,Lutsko James F.,Maes DominiqueORCID,Galand Quentin

Abstract

We report the investigation of various experimental conditions and their influence on polymorphism of 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile, commonly known as ROY. These conditions include an in-house-developed microfluidic chip with controlled mixing of parallel flows. We observed that different ROY concentrations and different solvent to antisolvent ratios naturally favored different polymorphs. Nonetheless, identical samples prepared with different mixing methods, such as rotation and magnetic stirring, consistently led to the formation of different polymorphs. A fourth parameter, namely the confinement of the sample, was also considered. Untangling all those parameters and their influences on polymorphism called for an experimental setup allowing all four to be controlled accurately. To that end, we developed a novel customized microfluidic setup allowing reproducible and controlled mixing conditions. Two parallel flows of antisolvent and ROY dissolved in solvent were infused into a transparent microchannel. Next, slow and progressive mixing could be obtained by molecular diffusion. Additionally, the microfluidic chip was equipped with a piezoceramic element, allowing the implementation of various mixing rates by acoustic mixing. With this device, we demonstrated the importance of parameters other than concentration on the polymorphism of ROY.

Funder

Strategic Research Program on Microfluidics at Vrije Universiteit Brussel

European Space Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3