Effects of Radio Frequency Bias on the Structure Parameters and Mechanical Properties of Magnetron-Sputtered Nb Films

Author:

Ni Zegang,Zhong Yuan,Tao Xingfu,Li Wei,Gao Huifang,Yao Yan

Abstract

Due to its highly unreactive nature and advanced biocompatibility, niobium (Nb) coating films are increasingly being used to improve the corrosion resistance and biocompatibility of base implant materials. However, Nb films have relatively low yield strengths and surface hardness; therefore, it is necessary to explore a simple and low-cost method to improve their mechanical properties. Magnetron sputtering is a commonly used tool for Nb film deposition. Applying substrate bias can introduce Ar+ bombard to the film surface, which is effective to improve the film’s mechanical properties. As the direct current (DC) bias-sputtering tool requires an extra DC power supply, applying the negative bias by a radio frequency (RF) power source (usually installed in the sputtering system to conduct substrate pre-cleaning) will be more economical and convenient. Moreover, the RF bias was accompanied with higher ion density and energy compared to the DC bias. In this study, Nb films were deposited on silicon wafers by magnetron sputtering under different RF bias powers. The effects of the RF bias on the structural parameters and mechanical properties of the films were studied via stress measurements, X-ray diffraction, and indentation tests. The results show that the RF bias can change the crystal distribution, grain size, and lattice parameter of the film, as well as the mechanical properties. The stress of the Nb film was compressive; it increased markedly when an RF power was applied and saturated when the RF power was over 40 W. The hardness of the film increased from 4.17 GPa to 5.34 GPa with an elevating RF power from 0 W to 60 W. This study aimed to enhance the mechanical properties of the Nb films deposited by RF-biased sputtering, which provides wider potentials for Nb film as protective coatings for medical–biological implant bodies. Although the research was carried out on Si substrates to facilitate the study of film stress, we believe that the evolution trends of our results will also apply to other metal substrates, because the measured film mechanical properties are intrinsic.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3