The Role of Cations and Anions in the Formation of Crystallization Oligomers in Protein Solutions as Revealed by Combination of Small-Angle X-ray Scattering and Molecular Dynamics

Author:

Marchenkova Margarita A.,Konarev Petr V.ORCID,Kordonskaya Yuliya V.,Ilina Kseniia B.,Pisarevsky Yury V.,Soldatov Alexander V.ORCID,Timofeev Vladimir I.,Kovalchuk Mikhail V.

Abstract

As is known from molecular dynamics simulation, lysozyme oligomers in crystallization solutions are most stable when taking into account as many precipitant ions as possible embedded in the corresponding crystal structure. Therefore, the number of precipitant ions associated with crystallographic oligomer models can play a role during the modeling of small-angle X-ray scattering (SAXS) data. This hypothesis has been tested in the present work. As a result, it turned out that the best fit quality to the experimental SAXS data is reached when using oligomers without precipitant ions at all or with embedded chlorine ions. Molecular dynamics (MD) simulation shows that the stability of crystallization oligomers depends on the consideration of anions and cations in oligomer structure. Thus, it is chlorine ions which stabilize dimer and octamers in lysozyme crystallization solution. As SAXS is more sensitive to the role of cations and MD shows the role of anions which are “light” for X-rays, it has been shown that precipitant cations most likely do not bind to monomers, but to already-formed oligomers.

Funder

Ministry of Science and Higher Education

FSRC «Crystallography and Photonics» RAS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3