Achievement of Unidirectional Aluminum Tin Oxide/UV-Curable Polymer Hybrid Film via UV Nanoimprinting Lithography for Uniform Liquid Crystal Alignment

Author:

Lee Dong-Wook,Kim Dong-Hyun,Won Jonghoon,Oh Jin-Young,Seo Dae-Shik

Abstract

A uniform unidirectional nanostructure composed of aluminum tin oxide and ultraviolet (UV)-curable polymer is introduced herein. The nanostructure was produced by UV-nanoimprint lithography (UV-NIL), and the fabricated hybrid film was used as a uniform liquid crystal (LC) alignment layer. Atomic force microscopy and line profile analysis were performed to confirm a well-ordered nanostructure with 760 nm periodicity and 30 nm height. X-ray photoelectron spectroscopy analysis was also conducted to examine the chemical modifications to the hybrid film surface during UV exposure. Optical transmittance investigation of the nanopatterned hybrid film revealed its compatibility for LC device application. Stable, uniform, and homogeneous LC alignment on the hybrid film was confirmed by polarized optical microscopy observance and analysis of LC pretilt angle. The unidirectional structure on the film surface enabled uniform LC orientation along with surface anisotropy property. Hence, we expect that the proposed UV-NIL process can be applied to fabricate high-resolution unidirectional nanostructures with various inorganic/organic hybrid materials and that these nanostructures have high potential for next-generation LC systems.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3