Abstract
The focus of this study is the fabrication of innovative and sustainable ceramic-based geopolymer with improved low temperatures performances. Kaolin was mixed with liquid sodium silicate (Na2SiO3) and 12M of sodium hydroxide (NaOH) solution using alkali activator ratio of 0.24 and solid-to-liquid ratio of 1:1 to synthesize kaolin geopolymer. The effect of the sintering profile on the microstructure, pore evolution and flexural strength were investigated. The heating exposure aided consolidation and created a fairly uniform microstructure, resulting in a smooth surface texture. In comparison to the unheated geopolymer, 3D pore distribution showed a significant increase in the range size of ~30 µm with the appearance of isolated and intergranular pores. The flexural strength at 1200 °C with a heating rate of 5 °C/min and was increased by 146.4% to 85.4 MPa, as compared to the heating rate of 2 °C/min. The sintering process has an impact on the final microstructure formation thus improving the characteristic of geopolymer-based nepheline ceramic.
Funder
Fundamental Research Grant Scheme
TUIASI
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献