Abstract
In the present study, four materials based on boron nitride nanotubes—namely pristine BNNT, C-doped BNNT, tetrapeptide/BNNT, and tetrapeptide/C-doped BNNT—were examined to evaluate adsorption of the organophosphorus pesticides chlorpyrifos and fenitrothion. Through a quantum chemical approach to the molecular and electronic structures, the impacts of C doping and tetrapeptide modification on boron nitride nanotubes are clarified. The results reveal that the tetrapeptide decoration does have the potential for differential sensing of chlorpyrifos and fenitrothion, but the improvement in the adsorption characteristics is slightly inferior to that of the C doping method. Nanosensors, such as C-doped BNNT and tetrapeptide/C-doped BNNT, are used to monitor chlorpyrifos and fenitrothion in solution phase, respectively. This quantum chemistry investigation has paved the way for the design of differential sensing devices for organophosphorus pesticides.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献