The Effect of DNA from Escherichia Coli at High and Low CO2 Concentrations on the Shape and Form of Crystal-line Silica-Carbonates of Barium (II)

Author:

Pérez-Aguilar Cesia D.,Islas Selene R.ORCID,Moreno AbelORCID,Cuéllar-Cruz MayraORCID

Abstract

The synthesis of nucleic acids in the Precambrian era marked the start of life, with DNA being the molecule in which the genetic information has been conserved ever since. After studying the DNA of different organisms for several decades, we now know that cell size and cellular differentiation are influenced by DNA concentration and environmental conditions. However, we still need to find out the minimum required concentration of DNA in the pioneer cell to control the resulting morphology. In order to do this, the present research aims to evaluate the influence of the DNA concentration on the morphology adopted by biomorphs (barium silica-carbonates) under two synthesis conditions: one emulating the Precambrian era and one emulating the present era. The morphology of the synthetized biomorphs was assessed through scanning electron microscopy (SEM). The chemical composition and the crystalline structure were determined through Raman and IR spectroscopy. Our results showed that DNA, even at relatively low levels, affects the morphology of the biomorph structure. They also indicated that, even at the low DNA concentration prevailing during the synthesis of the first DNA biomolecules existing in the primitive era, these biomolecules influenced the morphology of the inorganic structure that lodged it. On the other hand, this also allows us to infer that, once the DNA was synthetized in the Precambrian era, it was definitely responsible for generating, conserving, and directing the morphology of all organisms up to the present day.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3