Demonstration of Molecular Tunneling Junctions Based on Vertically Stacked Graphene Heterostructures

Author:

Hong Seock-Hyeon,Seo Dong-Hyoup,Song Hyunwook

Abstract

We demonstrate the fabrication and complete characterization of vertical molecular tunneling junctions based on graphene heterostructures, which incorporate a control series of arylalkane molecules acting as charge transport barriers. Raman spectroscopy and atomic force microscopy were employed to identify the formation of the molecular monolayer via an electrophilic diazonium reaction on a pre-patterned bottom graphene electrode. The top graphene electrode was transferred to the deposited molecular layer to form a stable electrical connection without filamentary damage. Then, we showed proof of intrinsic charge carrier transport through the arylalkane molecule in the vertical tunneling junctions by carrying out multiprobe approaches combining complementary transport characterization methods, which included length- and temperature-dependent charge transport measurements and transition voltage spectroscopy. Interpretation of all the electrical characterizations was conducted on the basis of intact statistical analysis using a total of 294 fabricated devices. Our results and analysis can provide an objective criterion to validate molecular electronic devices fabricated with graphene electrodes and establish statistically representative junction properties. Since many of the experimental test beds used to examine molecular junctions have generated large variation in the measured data, such a statistical approach is advantageous to identify the meaningful parameters with the data population and describe how the results can be used to characterize the graphene-based molecular junctions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3