Effect of Different Ca2+ and Zr4+ Contents on Microstructure and Electrical Properties of (Ba,Ca)(Zr,Ti)O3 Lead-Free Piezoelectric Ceramics

Author:

Du JianzhouORCID,Qiu LongORCID,Yang Cong,Chen YuanshengORCID,Zhu KongjunORCID,Wang Luming

Abstract

In the preparation of (Ba,Ca)(Zr,Ti)O3 lead-free piezoelectric ceramics, different Ca2+ and Zr4+ contents will greatly affect the phase structure, microstructure, and electrical properties of the ceramics. XRD shows that all samples have pure perovskite phase structure, and the (Ba0.85Ca0.15)(ZryTi1−y)O3 ceramics morphotropic phase boundary region from tetragonal phase to rhombohedral phase near 0.08 ≤ y ≤ 0.1. From the dielectric temperature curve, the phase transition temperature (TO-T) was found near room temperature at 0.12 ≤ x ≤ 0.18 for the (Ba1−xCax)(Zr0.1Ti0.9)O3 ceramics. Both Ca2+ and Zr4+ increase have a significant decrease on the Curie temperature Tc. All samples were revealed as relaxers with diffusivities in the range 1.29 ≤ γ ≤ 1.82. Different from the undoped ceramics, ceramics doped with Ca and Zr ions exhibit saturated P–E hysteresis loops, and their ferroelectric properties are significantly optimized. In particular, the (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramic demonstrated optimal properties, namely d33 = 330 pC/N, kp = 0.41, εr = 4069, Pr = 4.8 μC/cm2, and Ec = 3.1 kV/cm, indicating that it is a viable lead-free piezoelectric contender. Variations in Ca and Zr content have a significant effect on the crystal grain sizes and densities of ceramics, which is strongly associated with their piezoelectricity.

Funder

National Key Research and Development Program of China

Funding for school-level research projects of Yancheng Institute of Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3