Single-Step Fabrication and Characterization of Nanoscale Cu Thinfilms for Optoelectronic Applications

Author:

Alrobei HusseinORCID,Maqbool AdnanORCID,Hussain Muhammad AsifORCID,Malik Rizwan Ahmed,Karim Muhammad Ramzan AbdulORCID,AlBaijan Ibrahim,Hafiz Azeem,Latif Muhammad

Abstract

Nanostructured materials with optical transmittance with sufficient electrical conductivity are feasible for the transparent electrical devices and optoelectronic applications. Copper (Cu) possesses inherent superior electrical conductivity. Cu thin films on glass substrates provide the basic design understanding of the transparent electrodes for humidity sensors and solar cells applications. To understand the fundamental fabrication and electrical properties, a single-step facile fabrication approach was applied for Cu nanofilms through the DC sputtering method. Correlation of thickness of Cu nanofilms with optical and electrical properties was established. Parameters such as current, voltage, vacuum pressure, and time of coating were varied to develop different thickness of metal coating. Under optimized conditions of 10−1 torr vacuum, 1.45 KV voltage, and 4–6 min coating time, a conductive path is successfully established. A 1 min coated sample demonstrated resistance of 4000 ohm and conductance of a 6 min coated sample was raised to 56 m-mho. A higher surge of voltage assisted the production of relatively thick and uniform coatings with the crystallite size of 12 nm. The average coating thickness of 19.8 nm and roughness of 4.5 nm was obtained for a 5 min coated sample through AFM analysis. Further, it was observed that uniform nanostructured coating is essential to establish a mean free path of coated particles.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3