Influence of the Reaction Conditions in the Crystal Structures of Zn(II) and Ni(II) Coordination Compounds with a Dissymmetric Bis(Thiosemicarbazone) Ligand

Author:

Alonso Luis,Burón Rodrigo,López-Torres Elena,Mendiola Maria Antonia

Abstract

The new ligand HMeATSM, derived from condensation of 2-3-butanedione with 4-methyl-3-thiosemicarbazide and 2,4-dimethyl-3-thiosemicarbazide, has been synthesized. Its reactivity with nickel(II) and zinc(II) nitrates was explored and the resulting complexes were thoroughly characterized by elemental analysis, conductivity, mass spectrometry, IR, 1H and 13C NMR spectroscopies and their structures were confirmed by single-crystal X-ray diffraction. The results showed that the complex [Ni(MeATSM)]NO3 1 is formed under every reaction condition. In contrast, the reaction with zinc(II) nitrate depends on the temperature and the presence of LiOH·H2O, leading to the obtaining of complexes [Zn(MeATSM)(OH2)](NO3) 2 and [Zn(Me2TS)2(OH2)](NO3)2 3. The crystal structures of complexes 1 and 2 show that the dissymmetric ligand acts as a N2S2 tetradentate monoanionic ligand. The structural preferences of the metals also determine the structure of the complexes: whereas nickel(II) is in a square-planar environment, the zinc atom prefers a distorted square-base pyramid geometry imposed by the coordination mode and the planarity of the bis(thiosemicarbazone) ligand. In contrast, in complex 3, containing two bidentate Me2TS ligands, the Zn(II) is in a trigonal bipyramid arrangement. In all the complexes, the nitrate ion is not coordinated to the metal and acts as a counterion.

Funder

Ministry of Economy, Industry and Competitiveness

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3