Layered Double Hydroxides (LDHs) as New Consolidants for Cultural Heritage Masonry

Author:

Ion Rodica-MarianaORCID,Rizescu Claudiu Eduard,Vasile Dan Adrian,Vasilievici GabrielORCID,Atkinson Irina,Rusu Adriana,Predoana Luminita,Miculescu FlorinORCID

Abstract

(1) Background: In time, stone monuments suffer a process of aging and loss of aesthetic and mechanical properties. In order to restore and stop the loss of their properties, various treatments are used, and in this context, a new class of discovered materials with interesting properties are layered double hydroxides, or LDHs. (2) Methods: The LDHs, prepared by a coprecipitation method, were characterized by the structure by X-ray diffraction, composition by FT-IR spectroscopy and X-ray fluorescence spectroscopy, size by diffuse light scattering, and porosity by N2 adsorption/desorption. Additionally, some microscopy techniques such as optical microscopy and SEM/EDAX were used for surface aspects and morphology, and finally, all these were checked with ImageJ software for representative roughness parameters of the treated surfaces by brushing or incorporation. (3) Results: The prepared materials show different degrees of crystallinity and textural properties, and the dispersion of the material presents good stability in time in water/ethanol mixtures. Treatment with the LDH dispersion applied by brushing led to improvements in the mechanical properties (about a 5% increase in compressive strength), to an increased surface stability (about 30%), and to an improvement in the resistance to freeze–thaw cycles. The textural properties of the specimens’ materials were not altered by these treatments. (4) Conclusions: The order of the consolidation efficacity was CaMgAl-LDH > MgAl-LDH > CaAl-LDH, better for application by brushing than by incorporation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3