Ni-CeO2/SBA-15 Catalyst Prepared by Glycine-Assisted Impregnation Method for Low-Temperature Dry Reforming of Methane

Author:

Yang Jiliang,Gong Dandan,Lu Xinkang,Han Cui,Liu Hui,Wang LuhuiORCID

Abstract

Developing low-temperature nickel-based catalysts with good resistance to coking and sintering for dry reforming of methane (DRM) is of great significance. In this work, Ni (5 wt%) and CeO2 (5 wt%) were supported on SBA-15 porous material by glycine-assisted impregnation method to obtain Ni-CeO2/SBA-15-G catalyst. XRD and TEM results showed that the addition of glycine can effectively promote the dispersion of NiO and CeO2 in the pores of SBA-15. H2-TPR and XPS results confirmed the formation of stronger metal-support interaction. In addition, after the addition of glycine, the NixCe1−xOy solid solution content was increased significantly, meanwhile, the Ce3+ concentration was increased from 31% to 49%, accompanied by more oxygen vacancies and generation of active oxygen species. For the above reasons, Ni-CeO2/SBA-15-G had better catalytic performance in the low-temperature DRM test (20 h, 600 °C) with high GHSV (600,000 mL/gcat/h), its CH4 conversion after reaction of 20 h was 2 times that of Ni-CeO2/SBA-15-C catalyst prepared by a conventional impregnation method. TGA-DTA test also proved that Ni-CeO2/SBA-15-G almost completely eliminated carbon deposition. The above advantages of the Ni-CeO2/SBA-15-G catalyst may have originated from the complexation of glycine with metal cations and can prevent them from gathering.

Funder

The Science and Technology Foundation of Zhoushan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3