Effect of Service-Induced Degradation on Residual Stress Rupture Life of a Directionally Solidified Superalloy

Author:

Guo Xiaotong,Xing Weijie,Zhang Heng,Li Yong,Peng Hemeng,Yang Chuan

Abstract

The influence of service-induced degradation on residual life is very important for the safe service of turbine blades. In this study, a series of simulation experiments were conducted on a directionally solidified superalloy under (880–1020) °C/(70–220) MPa and interrupted after 500 h. Then, the stress rupture life of the interrupted specimens was tested under 980 °C/275 MPa. The results showed that the increase of simulated experiment temperature decreased the residual stress rupture life. In brief, the simulation experiments at 880 °C did not influence the residual stress rupture life of the alloy. The simulated experiments at 980 °C and 1050 °C mainly affected the microstructure of γ’ phase, while not γ/γ’ eutectic and carbides. After the stress rupture tests under 980 °C/275 MPa, cracks were located at the interfaces between carbides and γ matrix in the interdendritic regions. This study provides guidance on the degradation evaluation and safety service of the directionally solidified superalloys.

Funder

Science and Technology Program of Guangzhou of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference19 articles.

1. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties

2. Damageability of gas turbine blades-evaluation of exhaust gas temperature in front of the turbine using a non-linear observer;Báachnio,2011

3. Superalloys: A technical Guide;Donachie,2002

4. Fatigue strength of gas turbine compressor blades

5. Failure assessment of Nimonic 80A gas turbine blade

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3