Abstract
The transport and crystallization processes of chromogenic 5.0% CuSO4 solution in the supporting body and coarse plaster of simulated wall painting samples were observed. A scanning electron microscope a and self-designed double-layer surface contact internal pressure method were used to test, respectively, the micro-morphologies of salt crystals in different regions and the micro-forces on the contact surfaces during the spread and crystallization of water and salt solution. The results demonstrate that the salt crystals formed by the CuSO4 solution on the surface of the simulated wall painting showed two different shapes: a salt belt formed by clustered crystals, and a layer of salt crust. The difference was speculated to be related to the crystals’ growth conditions. The destructive effect of salt solution and salt crystals on wall paintings manifested itself by weakening the connectivity between different materials, and changing the volume and morphology of the wall paintings. Using the double-layer surface contact internal pressure method, the forces generated by the salt solution and salt crystals on the simulated wall paintings were demonstrated to be adsorption force, expansion force generated by the crystals’ precipitation and growth, and suction force resulting from water loss and the shrinkage of crystals. The expansion force and suction force were not in a stable state, resulting in the contact surfaces continuously bending and stretching. Compared with pure water, salt solution can aggravate damage to the stability of wall paintings. This analysis of the transport, crystallization and micro-forces of a chromogenic salt solution in simulated wall painting samples can provide a scientific basis for studying the general patterns of damage caused by soluble salt to wall paintings during its transport and crystallization, and provide insight that can further the protection of cultural relics.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of Shanghai in China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献