Abstract
A comprehensive theory of light-reflective characteristics and experimental technique of liquid crystal layer thickness control for flexible optically rewritable electronic paper is presented. Cylindrical pillars were used to control the gap between flexible substrates. The introduced prototype of optically rewritable electronic paper has shown very promising performance. In this regard, we report theoretical results of structural photosensitive alignment of nematic liquid crystals on flexible substrate. The focus of theoretical study is on understanding the self-assembled complex structure, governed by the interplay between surface anchoring and liquid crystal elasticity. Mueller matrix spectroscopic ellipsometry was used to study light-reflecting characteristics and polarization properties of the twisted nematic film.
Funder
Russian Science Foundation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献