Ecofriendly and Electrically Conductive Cementitious Composites Using Melamine-Functionalized Biochar from Waste Coffee Beans

Author:

Jeong JunyoungORCID,Jeon Giyoung,Ryu Seongwoo,Lee Joo HaORCID

Abstract

Owing to the increasing generation of waste coffee powder and the biochar from this waste being considered as alternative conductive carbon fillers, we developed eco-friendly and electrically conductive cementitious composites using biochar from waste coffee beans, which were directly pyrolyzed into eco-friendly and electrically conductive biochar. Via carbonization and graphitization, cyclic organic carbon precursors were transformed into sp2-bonded carbon structures and then functionalized with melamine. The non-covalent functionalization process driven by the electromagnetic process accelerated the mass production and enhanced the monodispersive properties of the cementitious composites. Thus, the melamine-functionalized biochar cementitious composites exhibited an electrical conductivity of 3.64 × 10−5 ± 1.02 × 10−6 S/cm (n = 6), which corresponded to an improvement of over seven orders of that of pure concrete. Furthermore, the percolation threshold of biochar was between 0.02 and 0.05 wt.%; thus, an effective conductive network could be formed using low additions of functionalized biochar. As a result, in this study, electrically conductive cementitious composites were developed using waste coffee powder converted into carbon nanomaterials through a newly introduced process of non-covalent functionalization with melamine.

Funder

Ministry of Land, Infrastructure and Transport

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3