Nanomechanical Characterization of High-Velocity Oxygen-Fuel NiCoCrAlYCe Coating

Author:

Zhou Feifei,Guo Donghui,Xu Baosheng,Wang Yiguang,Wang You

Abstract

MCrAlY (M = Ni or/and Co) coatings have played an indispensable role in the high-temperature protection system for key components of aero-engines due to their excellent high-temperature oxidation and hot corrosion resistance. Nanoindentation is a useful and highly efficient method for characterizing the nanomechanical properties of materials. The rich information reflecting materials can be gained by load-displacement curves. In addition to common parameters such as elastic modulus and nanohardness, the indentation work and creep property at room temperature can also be extracted. Herein, nanomechanical properties of NiCoCrAlYCe coatings using high-velocity oxygen-fuel (HVOF) spraying were investigated systematically by nanoindentation. The microstructure of as-sprayed NiCoCrAlYCe coatings present mono-modal distribution. Results of nanoindentation reveal that the elastic modulus and nanohardness of NiCoCrAlYCe coatings are 121.08 ± 10.04 GPa and 6.09 ± 0.86 Gpa, respectively. Furthermore, the indentation work of coatings was also characterized. The elastic indentation work is 10.322 ± 0.721 nJ, and the plastic indentation work is 22.665 ± 1.702 nJ. The ratio of the plastic work to the total work of deformation during indentation is 0.687 ± 0.024, which can predict excellent wear resistance for NiCoCrAlYCe coatings. Meanwhile, the strain rate sensitivity determined by nanoindentation is 0.007 ± 0.001 at room temperature. These results can provide prediction of erosion resistance for MCrAlY coatings.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3