Evolution of a Polydisperse Ensemble of Spherical Particles in a Metastable Medium with Allowance for Heat and Mass Exchange with the Environment

Author:

Alexandrov Dmitri V.ORCID,Ivanov Alexander A.,Nizovtseva Irina G.,Lippmann Stephanie,Alexandrova Irina V.,Makoveeva Eugenya V.

Abstract

Motivated by a wide range of applications in various fields of physics and materials science, we consider a generalized approach to the evolution of a polydisperse ensemble of spherical particles in metastable media. An integrodifferential system of governing equations, consisting of a kinetic equation for the particle-size distribution function (Fokker–Planck type equation) and a balance equation for the temperature (concentration) of a metastable medium, is formulated. The kinetic equation takes into account fluctuations in the growth/reduction rates of individual particles, the velocity of particles in a spatial direction, the withdrawal of particles of a given size from the metastable medium, and their source/sink term. The heat (mass) balance equation takes into account the growth/reduction of particles in a metastable system as well as heat (mass) exchange with the environment. A generalized system of equations describes various physical and chemical processes of phase transformations, such as the growth and dissolution of crystals, the evaporation of droplets, the boiling of liquids and the combustion of a polydisperse fuel. The ways of analytical solution of the formulated integrodifferential system of equations based on the saddle-point technique and the separation of variables method are considered. The theory can be applied when describing the evolution of an ensemble of particles at the initial and intermediate stages of phase transformation when the distances between the particles are large enough, and interactions between them can be neglected.

Funder

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference73 articles.

1. Nucleation;Zettlemoyer,1969

2. Crystallization;Mullin,1972

3. Nucleation and Crystal Growth in Batch Crystallizers;Janse,1977

4. Industrial Sucrose Crystallization;Pot,1980

5. Nucleation in Condensed Matter: Applications in Materials and Biology;Kelton,2010

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3