The Correspondence Theory and Its Application to NiTi Shape Memory Alloys

Author:

Cayron CyrilORCID

Abstract

Martensite crystallography is usually described by the phenomenological theory of martensite crystallography (PTMC). This theory relies on stretch matrices and compatibility equations, but it does not give a global view on the structures of variants, and it masks the relative roles of the symmetries and metrics. Here, we propose an alternative theory called correspondence theory (CT) based on correspondences and symmetries. The compatibility twins between the martensite variants are inherited by correspondence from the symmetry elements of austenite. We show that, for the B2 to B19′ transformation, there is a one-to-one relation between the specific misorientations and the specific inter-correspondences between the variants. For each type of misorientation, the twin of its junction plane can be predicted without calculating the stretch matrices, as in PTMC. The rational elements of the twins do not depend on the metrics; all the transformation twins are thus “generic”. We also introduce the concept of a weak plane that permits to explain the junction planes for polar pairs of variants for which the PTMC compatibility equations cannot be solved. The predictions are validated by comparison with experimental Transmission Kikuchi Diffraction (TKD) maps.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3