Enhancement of Surface and Interface Properties of Low Carbon Steel by Hybrid ZnO and NiO Nanoparticles Reinforced Tin Coating

Author:

Abdel Halim K. S.ORCID,Ramadan MohamedORCID,Sherif El-Sayed M.ORCID,Hafez Khalid M.ORCID,Subhani Tayyab,Fathy Naglaa,Alghamdi Abdulaziz S.,Khedr Mohamed H.

Abstract

Tin matrix nanocomposite coatings containing ZnO and NiO nanoparticles, both individually and combined, were deposited on low carbon steel substrates. The aim was to investigate the effect of reinforcement of nanoparticles on microstructural morphology and thickness of tin coatings, modification in the interfacial layer between coating and substrate, and the corrosion resistance of low carbon steel substrate. Optical and scanning electron microscopy were employed for microstructural observation, while potentiostat-galvanostat was utilized for electrochemical investigation. It was found that the tin nanocomposite coatings with nanoparticles significantly modified the coating thickness, intermetallic layer thickness, and surface corrosion resistance. Coatings through the direct tinning process are considered to be a simple and low-cost route for protecting metallic materials from corrosion, and the presence of ZnO and NiO nanoparticles in tin coatings further increases the corrosion resistance of low carbon steels.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3