The Behavior of Water in Orthoclase Crystal and Its Implications for Feldspar Alteration

Author:

Zuo Hongyan,Liu Rui,Lu Anhuai

Abstract

The phenomenon of feldspar alteration that occurs in the interior of feldspar crystals remains poorly understood. We observed experimentally that water can go into orthoclase crystals under pressures of up to 600 MPa at room temperature. With increasing pressure, the FTIR spectra of colorless orthoclase show a sharp increase in integral absorbance from 1.50 cm−1 to 14.54 cm−1 and normalized integral absorbance from 120 cm−2 to 1570 cm−2; the pink orthoclase saturates quickly with no significant change in either the integral absorbance or normalized integral absorbance. The different responses to the pressure between colorless orthoclase and pink orthoclase might be related to the K content in the structure. Moreover, FTIR spectra at atmospheric pressure collected in different crystallography directions show different absorbance intensities, which illustrates the characteristic of preferred crystallographic orientations. These results reveal that H2O molecules can occur as structural constituents entering the crystallographic channels of alkali feldspar crystals, preferentially along (001) orientation. These findings provide clues into the mechanism of feldspar alteration occurring in the interior of feldspar crystals, as well as the formation of micropores and microstructure in feldspar minerals. This study also provides important insights into the behavior of water molecules in nominally anhydrous minerals in the upper crust of the Earth.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3