Abstract
Low cycle fatigue (LCF) crack initiation, propagation and damage behaviors of TC21 alloy with basketweave microstructure were investigated. The process of LCF damage was observed by a long-focus optical microscopic imaging system, and fatigue crack propagation was analyzed through in-situ SEM fatigue. The results indicated that LCF crack damage displayed different sensitivity to cyclic stress. LCF microcracks initiated from slip bands and propagated through the microcrack coalescences at high stress, while LCF cracks tended to initiate at the αL/β interface and connect with these interface microcracks. Furthermore, the LCF damage model was established on the basis of Lemaitre damage theory. When the maximum stress exceeded yield stress, LCF damage increased sharply and fatigue life decreased significantly, which agreed with experiment data.
Funder
R & D plan for key areas in Guangdong Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献