Influence of Polymer Latexes on the Properties of High Performance Cement–Based Materials

Author:

Cheng Daxiang,Li Xiaosheng,Gao Xu,Fan Xiaochun,Zhao Rui,Yang Tingli

Abstract

The application of polymer latex provides an additional approach when optimizing the properties of high–performance cement–based materials. Given that cement–based materials are extraordinarily sensitive to the characteristics and relative content of polymer latexes, identifying their influence is essential for application. This paper investigates the impact of polymer latex types and its relative content on the mechanical properties, hydration product, pore structure, and drying shrinkage of cement–based materials with a low water to binder ratio. The results showed that the mechanical properties, pore structure, and drying shrinkage of the styrene butadiene latex modified samples were better than those of ethylene vinyl acetate latex and silicone acrylic latex modified ones. Incremental increases to the polymer to cement ratio induces a slight reduction on compressive strength, and styrene–butadiene latex promotes tensile strength. Polymer latex hinders the transformation from ettringite to monosulfate, reducing the bound water and portlandite generated. Increasing the polymer content induces more significant stretching in the vibration peak of SO4 from ettringite. Further incorporation of polymer latex contributes to ettringite precipitation and the decline of harmful pores. Polymer addition also results in lower drying shrinkage compared with the reference group.

Funder

The National Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3