Abstract
Deltamethrin pesticides can cause inflammation, nephrotoxicity and hepatotoxicity as well as affect the activity of antioxidant enzymes in tissues. As a result of this concern, there is a rising focus on the development of fast and reliable pesticide residue testing to minimise potential risks to humans. The goal of this study is to use Au-Ag colloid nanoparticles as liquid surface-enhanced Raman spectroscopy (SERS) to improve the Raman signal in the detection of deltamethrin pesticide in a brewed tea. The liquid SERS system is fascinating to study due to its ease of use and its unlikeliness to cause several phenomena, such as photo-bleaching, combustion, sublimation and even photo-catalysis, which can interfere with the Raman signal, as shown in the SERS substrate. Our liquid SERS system is simpler than previous liquid SERS systems that have been reported. We performed the detection of pesticide analyte directly on brewed tea, without diluting it with ethanol or centrifuging it. Femtosecond laser-induced photo-reduction was employed to synthesise the liquid SERS of Au, Au-Ag, and Ag colloidal nanoparticles. The SERS was utilised to detect deltamethrin pesticide in brewed tea. The result showed that liquid SERS-based Ag NPs significantly enhance the Raman signal of pesticides compared with liquid SERS-based Au NPs and Au-Ag Nanoalloys. The maximum residue limits (MRLs) in tea in Indonesia are set at 10 ppm. Therefore, this method was also utilised to detect and improve, to 0.01 ppm, the deltamethrin pesticide Limit of Detection (LOD).
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献