Using Powder Diffraction Patterns to Calibrate the Module Geometry of a Pixel Detector

Author:

Wright Jonathan P.ORCID,Giacobbe Carlotta,Lawrence Bright Eleanor

Abstract

The precision and accuracy of diffraction measurements with 2D area detectors depends on how well the experimental geometry is known. A method is described to measure the module geometry in order to obtain accurate strain data using a new Eiger2 4M CdTe detector. Smooth Debye–Scherrer powder diffraction rings with excellent signal to noise were collected by using a fine-grained sample of CeO2. From these powder patterns, the different components of the module alignment errors could be observed when the overall detector position was moved. A least squares fitting method was used to refine the detector module and scattering geometry for a series of powder patterns with different beam centers. A precision that is around 1/350 pixel for the module positions was obtained from the fit. This calibration was checked by free refinement of the unit cell of a silicon crystal that gave a maximum residual strain value of 2.1 × 10−5 as the deviation from cubic symmetry.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3