Extreme Learning Machine Approach to Modeling the Superconducting Critical Temperature of Doped MgB2 Superconductor

Author:

Olatunji Sunday OlusanyaORCID,Owolabi TaoreedORCID

Abstract

Magnesium diboride (MgB2) superconductor combines many unique features such as transparency of its grain boundaries to super-current flow, large coherence length, absence of weak links and small anisotropy. Doping is one of the mechanisms for enhancing these features, as well as the superconducting critical temperature, of the compound. During the process of doping, the MgB2 superconductor structural lattice is often distorted while the room temperature resistivity, as well as residual resistivity ratio, contributes to the impurity scattering in the lattice of doped samples. This work develops three extreme learning machine (ELM)-based empirical models for determining MgB2 superconducting critical temperature (TC) using structural distortion as contained in lattice parameters (LP) of doped superconductor, room temperature resistivity (RTR) and residual resistivity ratio (RRR) as descriptors. The developed models are compared with nine different existing models in the literature using different performance metrics and show superior performance over the existing models. The developed SINE-ELM-RTR model performs better than Intikhab et al. (2021)_linear model, Intikhab et al. (2021)_Exponential model, Intikhab et al. (2021)_Quadratic model, HGA-SVR-RRR(2021) model and HGA-SVR-CLD(2021) model with a performance improvement of 32.67%, 29.56%, 20.04%, 8.82% and 13.51%, respectively, on the basis of the coefficient of correlation. The established empirical relationships in this contribution will be of immense significance for quick estimation of the influence of dopants on superconducting transition temperature of MgB2 superconductor without the need for sophisticated equipment while preserving the experimental precision.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3