Experimental and Numerical Analysis of Progressive Damage of SiCf/SiC Composite under Three-Point Bending

Author:

Li Xiang,Luo Ruiying

Abstract

Satin SiCf/SiC composite has a wide range of applications; it is necessary to study its mechanical properties. The progressive failure of five-harness five-layer satin weave SiCf/SiC plate composites was explored experimentally and numerically in this research. The bending properties were derived and elucidated at ambient temperature through a three-point bending experiment. The generation and progression of damage was observed by CCD camera. For quantitative analysis of the strain field evolution, DIC (digital image correlation) was adopted, while the microscopic analyses were performed for the description of the derived failure markings. With the aid of ABAQUS/Explicit, the experiment was subjected to 3D finite element modeling for the reproduction of the material behavioral, where the VUMAT subroutine was used to implement a 3D-altered criterion of the Hashin damage initiation and the progression law of its complementary damage. Intra-deformation interface failure was simulated with a composite interlayer cohesive zone element. The experimentally derived DIC-based strain fields were well-consistent with the numerical outcomes. Deeper investigation was made into the superiority of the 3D modeling, which is ascribed to the predictability for distribution of complex field variables like the free-edge effect and progressive failure accumulation within the critical sample section. The damage mechanism of the satin weave composite was explored in depth and it provides useful guidance for the practical application of the composite.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3