Confirming the Unusual Temperature Dependence of the Electric-Field Gradient in Zn

Author:

Haas HeinzORCID,Zyabkin DmitryORCID,Schell JulianaORCID,Dang Thien T.ORCID,Yap Ian C. J.ORCID,Michelon Ilaria,Gaertner Daniel,Gerami Adeleh Mokhles,Noll Cornelia,Beck Reinhard

Abstract

The electric-field gradient (EFG) at nuclei in solids is a sensitive probe of the charge distribution. Experimental data, which previously only existed in insulators, have been available for metals with the development of nuclear measuring techniques since about 1970. An early, systematic investigation of the temperature dependence of the EFG in metals, originally based on results for Cd, but then also extended to various other systems, has suggested a proportionality to T3/2. However, later measurements in the structurally and electronically similar material Zn, which demonstrated much more complex behavior, were largely ignored at the time. The present experimental effort has confirmed the reliability of this unexpected behavior, which was previously unexplained.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3