Comparison and Determination of Optimal Machine Learning Model for Predicting Generation of Coal Fly Ash

Author:

Qi ChongchongORCID,Wu Mengting,Lu Xiang,Zhang Qinli,Chen Qiusong

Abstract

The rapid development of industry keeps increasing the demand for energy. Coal, as the main energy source, has a huge level of consumption, resulting in the continuous generation of its combustion byproduct coal fly ash (CFA). The accumulated CFA will occupy a large amount of land, but also cause serious environmental pollution and personal injury, which makes the resource utilization of CFA gradually to be attached importance. However, given the variability of the amount of CFA generation, predicting it in advance is the basis to ensure effective disposal and rational utilization. In this study, CFA generation was taken as the target variable, three machine learning (ML) algorithms were used to construct the model, and four evaluation indices were used to evaluate its performance. The results showed that the DNN model with the R = 0.89, R2 = 0.77 on the testing set performed better than the traditional multiple linear regression equation and other ML algorithms, and the feasibility of DNN as the optimal model framework was demonstrated. Applying this model framework to the engineering field enables managers to identify the next step of the disposal method in advance, so as to rationally allocate ways of recycling and utilization to maximize the use and sales benefits of CFA while minimizing its disposal costs. In addition, sensitivity analysis further explains ML’s internal decisions and verifies that coal consumption is more important than installed capacity, which provides a certain reference for ensuring the rational utilization of CFA.

Funder

The State Key Laboratory of Coal Resources and safe Mining, CUMT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference48 articles.

1. Coal-based fly ash

2. Electricity Market Report,2022

3. Global Energy Review,2021

4. A review on fly ash utilization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3