Abstract
The rapid development of industry keeps increasing the demand for energy. Coal, as the main energy source, has a huge level of consumption, resulting in the continuous generation of its combustion byproduct coal fly ash (CFA). The accumulated CFA will occupy a large amount of land, but also cause serious environmental pollution and personal injury, which makes the resource utilization of CFA gradually to be attached importance. However, given the variability of the amount of CFA generation, predicting it in advance is the basis to ensure effective disposal and rational utilization. In this study, CFA generation was taken as the target variable, three machine learning (ML) algorithms were used to construct the model, and four evaluation indices were used to evaluate its performance. The results showed that the DNN model with the R = 0.89, R2 = 0.77 on the testing set performed better than the traditional multiple linear regression equation and other ML algorithms, and the feasibility of DNN as the optimal model framework was demonstrated. Applying this model framework to the engineering field enables managers to identify the next step of the disposal method in advance, so as to rationally allocate ways of recycling and utilization to maximize the use and sales benefits of CFA while minimizing its disposal costs. In addition, sensitivity analysis further explains ML’s internal decisions and verifies that coal consumption is more important than installed capacity, which provides a certain reference for ensuring the rational utilization of CFA.
Funder
The State Key Laboratory of Coal Resources and safe Mining, CUMT
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference48 articles.
1. Coal-based fly ash
2. Electricity Market Report,2022
3. Global Energy Review,2021
4. A review on fly ash utilization
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献