Trifluoromethyl Substituted Derivatives of Pyrazoles as Materials for Photovoltaic and Electroluminescent Applications

Author:

Pokladko-Kowar Monika,Gondek Ewa,Danel Andrzej,Uchacz Tomasz,Szlachcic Paweł,Wojtasik KatarzynaORCID,Karasiński PawełORCID

Abstract

New 6-CF3-1H-pyrazolo[3,4-b]quinolines with a methyl and/or phenyl group attached to the pyrazole core (Molx (x = 1, 2, 3, 4)) were synthesized and characterized in terms of their optoelectronic applications: photovoltaic and electroluminescence. The fluorescence emissions of the investigated phenyl-decorated pyrazoloquinolines is caused by the photoinduced charge transfer p process occurring between the phenyl substituent and the pyrazoloquinoline core, while 1,3-dimethyl-6-CF3-1H-pyrazolo[3,4-b]quinoline exhibits an π,π*-type emission. The number of phenyls and their substitution positions modulate both emission properties and HOMO energy levels. Next, the bulk heterojunction BHJ solar cells based on 1H-pyrazolo[3,4-b] quinoline derivatives with architecture ITO/PEDOT:PSS/PDT + Molx/Al were fabricated. The organic active layer was a blend of Molx and poly(3-decylthiophene-2,5-diyl). The complex refractive index and the layer thickness of the organic solar cells were determined using a spectroscopic ellipsometer Woollam M2000 (J.A. Woollam Co., Inc., Lincoln, NE, USA) and CompleteEASE software. For solar devices with the best value of power efficiency of approximately 0.38%, the thickness of the active layer (Mol3 + PDT) was 111 nm, with a short-circuit current density of JSC = 32.81 μA/cm2 and an open–circuit voltage of VOC = 0.78 V. Finally, we demonstrated double-layer light-emitting diodes with an organic active layer (Molx + PVK) and an electron transporting material layer, ETM (2-[3,5-bis(4-phenyl-2-quinolyl)phenyl]-4-phenylquinoline (Tris-Q). Bright bluish-green light originating from the active layer was observed in the double-layer device, ITO/PEDOT:PSS/active layer/ETM/Ca/A. The active layer was a mixture of PV-doped 1H-pyrazolo[3, 4-b]quinoline dyes. An OLED device was constructed by employing Molx as an emitter, which gave a deep bluish-green emission with the spectra range of 481–506 nm. The best value of the maximum brightness at approximately 1436.0 cd/m2 was achieved for a diode based on Mol3 (1-phenyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline) and [R1 = Ph, R3 = Ph and R6 = CF3]. The current efficiency was up to 1.26 cd/A at 506 nm with a CIE of 0.007, 0.692.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3